Matematika

Pertanyaan

rumus aljabar lengkap

1 Jawaban

  • OPERASI BENTUK ALJABAR

    1. Penjumlahan dan Pengurangan Aljabar

    a. Sifat Komutatif

    a + b = b + a
    b. Sifat Asosiatif

    (a+b) + c = a + (b+c)
    c. Sifat Distributif

    a (b+c) = ab + ac
    Contoh

    6mn + 3mn = 9 mn
    6m + 3(m2 – n2) – 2m2 + 3n2 = 6m + 3m2 – 3n2 – 2m2 + 3n2
    = m2 + 6m
    2. Perkalian Bentuk Aljabar

    a. Perkalian satu suku dengan suku dua

    contoh
    –9p(5p – 2q) = -45p2 + 18 pq
    b. Perkalian suku dua dengan suku dua
    contoh

    (x+5) (x+3) = (x+5) x + (x+5) 3
    = x2 + 5x + 3x + 15
    = x2 + 8x + 15
    3. Pembagian Bentuk Aljabar

    “pembagian bentuk aljabar akan lebih mudah jika dibuat dalam bentuk pecahan”

    Contoh
    9x : 3 = 9x/3 = 3x
    15pq : 5q = 15pq / 5 q = 3p

    4. Perpangkatan Bentuk Aljabar

    Materi pangkat sebenarnya sudah dipelajari dikelas 7 SMP. Pada intinya sama, bilangan pangkat didefinisikan sebagai:

    an = a x a x a x … x a (a sebanyak n)

    Contoh jika diaplikasikan dalam bentuk aljabar

    (2a)3 = 2a x 2a x 2a = 2 x 2 x 2 x a x a x a = 8a3
    (4x2y)2 = 4x2y x 4x2y = 16 x4 y2

    (a+b)2 = a2 + 2ab + b2
    (a-b)2 = a2 – 2ab + b2
    PEMFAKTORAN BENTUK ALJABAR

    1. Pemfaktoran menggunakan Sifat Distributif

    Contoh:
    Coba sobat tentukan Faktor dari 5ab + 10b
    untuk menentukan faktor dari 5ab + 10b sobat cari dulu faktor persekutuan terbesar (FPB) dari 5 dan 10 serta dari ab dan b. FPB dari 5 dan 10 adalah 5 dan persekutuan terbesar ab dan b adalah b. Jadi kita keluarkan 5b.

    5ab + 10b = 5b (a+2b)

    2. Pemfaktoran Selisih Dua Kuadrat

    Yang disebut dengan bentuk selisih dua kuadrat adalah:

    a2 – b2 = (a+b) (a-b)
    Contoh
    25x2 – y2 = (5x + y) (5x – y)
    20p2 – 5q2 = 5 (4p2 – q2) = 5 (2p + q) (2p – q)

    3. Pemfaktoran Bentuk Kuadrat

    a. Pemfaktoran ax2 + bx + c dengan a = 1
    Bentuk aljabar kuadrat x2 + (p + q)x + pq dapat sobat difaktorkan menjadi (x + p) (x + q).

    Misalkan, x2 + (p + q)x + pq = ax2 + bx + c sehingga a = 1, b = p + q,dan c = pq.

    Dari pemisalan tersebut, dapat dilihat bahwa p dan q merupakan faktor dari c. Jika p dan q dijumlahkan, hasilnya adalah b. Dengan demikian untuk memfaktorkan bentuk ax2 + bx + c dengan a = 1, tentukan dua bilangan yang merupakan faktor dari c dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan b.

    Contoh
    x2 + 5x + 6 = (x + …) (x + …)
    Sobat misalkan, x2 + 5x + 6 = ax2 + bx + c, diperoleh a = 1, b = 5, dan c = 6.
    Untuk mengisi titik-titik, tentukan dua bilangan yang merupakan faktor dari 6 dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan 5. Faktor dari 6 adalah 6 dan 1 atau 2 dan 3, yang memenuhi syarat adalah 2 dan 3 karena 2 + 3 = 5

    Jadi, x2 + 5x + 6 = (x + 2) (x + 3)

    b. Pemfaktoran Bentuk ax2 + bx + c dengan a ≠ 1
    Sebelumnya, sobat telah memfaktorkan bentuk ax2 + bx + c dengan a = 1. Sekarang kamu akan mempelajari cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1.

    Perhatikan contoh berikut:

    (x + 3) (2x + 1) = 2x2 + x + 6x + 3
    = 2x2 + 7x + 3
    Dengan kata lain, bentuk 2x2 + 7x + 3 difaktorkan menjadi (x + 3) (2x + 1). Adapun cara memfaktorkan 2×2 + 7x + 3 adalah dengan membalikkan tahapan perkalian suku dua di atas.

    2x2 + 7x + 3 = 2x2 + (x + 6 x) +3
    = (2x2 + x) + (6x + 3)
    = x (2x + 1) + 3(2x + 1)
    = (x + 3)(2x+1)

Pertanyaan Lainnya